Polarized Hessian Covariant: Contribution to Pattern Formation in the Föppl-von Kármán Shell Equations

نویسندگان

  • Patrick Shipman
  • Partha Guha
چکیده

We analyze the structure of the Föppl-von Kármán shell equations of linear elastic shell theory using surface geometry and classical invariant theory. This equation describes the buckling of a thin shell subjected to a compressive load. In particular, we analyze the role of polarized Hessian covariant, also known as second transvectant, in linear elastic shell theory and its connection to minimal surfaces. We show how the terms of the Föppl-von Kármán equations related to in-plane stretching can be linearized using the hodograph transform and relate this result to the integrability of the classical membrane equations. Finally, we study the effect of the nonlinear second transvectant term in the Föppl-von Kármán equations on the buckling configurations of cylinders. Mathematics Subject Classifications (2000): 58D05, 35Q53.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Energy of Crumpled Sheets in Föppl-von Kármán Plate Theory

Abstract. We study investigate a long, thin rectangular elastic membrane that is bent through an angle 2α, using the Föppl–von Kármán ansatz in a geometrically linear setting. We study the associated variational problem, and show the existence of a minimizer for the elastic energy. We also prove rigorous upper and lower bounds for the minimum energy of this configuration in terms of the plate t...

متن کامل

Dynamic contact problem for a von Kármán-Donnell shell

The existence of solutions is proved for the unilateral dynamic contact of a von Kármán-Donnell shell with a rigid obstacle. Both purely elastic material and a material with a singular memory are treated.

متن کامل

Finite element approximations of the von Kármán equations

— We analyse a général technique in order to prove the convergence and optimal error boundsfor suitable finite element approximations of the von Kârmân plate bending équations.

متن کامل

Nonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory

Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008